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Abstract

This paper presents branch-and-bound parallelization strategies applied to the location/

allocation problem with balancing requirements. This formulation is representative of a larger

class of discrete network design and location problems arising in many transportation logistics

and telecommunications applications: it displays a multicommodity network ¯ow structure

and a complex objective function comprising ®xed and variable ¯ow costs. As for many

problems of this class, the bounding procedure embedded in the branch-and-bound algorithm

is complex and time-consuming. The parallelization strategies that we describe are designed to

exploit this feature. Parallelism is obtained by dividing the search tree among processors and

performing operations on several subproblems simultaneously. The strategies di�er in the way

they manage the list of subproblems and control the search. We report and analyze experi-

mental results, on a distributed network of workstations, which aim to compare di�erent

implementations of these strategies. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Network design and location models are often called upon to represent complex
issues arising in transportation, logistics, telecommunications, and production
planning applications. These models are usually formulated as large-scale, combi-
natorial mixed integer programs with complex constraint structures [15,18,20].
Branch-and-bound (B&B) is currently the only general tool available for ®nding
optimal solutions to these di�cult formulations. Yet, even with the help of e�cient
specialized algorithms that compute tight bounds on their optimum values, realis-
tically formulated and dimensioned models require the exploration of such huge
search trees that optimal solutions cannot be found but for the simplest instances.
Parallel computing increasingly appears as an e�cient and practical way to address
this issue.

The objective of this paper is to present and experimentally compare general
parallelization strategies adapted to typical B&B algorithms for this class of prob-
lems. Parallelism is obtained by dividing the search tree among processors and
performing operations on several subproblems simultaneously. The strategies di�er
in the way they manage the list of subproblems and control the search. We apply the
strategies to a representative formulation, the location/allocation problem with
balancing requirements [7]. Similar to many other discrete network design problems,
this formulation exhibits a multicommodity network ¯ow structure and a complex
objective function comprising ®xed and variable ¯ow costs. Furthermore, the
bounding procedures embedded into the currently best known B&B algorithm for
this problem [13] are complex and time-consuming.

Parallel B&B algorithms have been the object of an abundant literature; see, e.g.,
the 1994 survey by Gendron and Crainic [12]. In this survey, the authors mention
only a few references that implement and compare various strategies of storage and
control (notable examples are [19,21,22]). Yet, such studies are essential for our
understanding of parallel B&B and its behavior on various problem classes. The
present paper adds to the growing body of literature dedicated to such comparisons
(recent examples are Refs. [3,9]), with a particular focus on location/network design
formulations.

We present a framework for implementing three general strategies, which can be
used to parallelize most B&B algorithms specialized to location/network design
problems. The strategies are implemented on a distributed network of workstations
and computational experiments are performed on several instances of the location/
allocation problem with balancing requirements. Previous attempts at exploiting
parallelism in B&B algorithms to solve this problem can be found in [11,14] and two
of the strategies presented in this paper are indeed inspired by these developments.
We introduce, however, a number of improvements and re®nements over the
methods described in these papers. Moreover, it is the ®rst time that these parall-
elization strategies are compared.

The paper is organized as follows. Section 2 presents the parallelization strategies,
while Section 3 brie¯y recalls the location/allocation problem with balancing re-
quirements and the main features of the sequential B&B algorithm designed to solve
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it. The implementation details and the computational experiments are the subject of
Section 4. The conclusion summarizes our work and proposes extensions.

2. Parallelization strategies

In the following, we give a general outline of each of the parallel B&B strategies
analyzed in this paper. The presentation is general and independent of the particular
problem class. For simplicity of exposition, we assume a message-passing architec-
ture, but the strategies can also be adapted to shared-memory machines. The actual
implementations are detailed in Section 4. To ®x the vocabulary, the section starts
with a brief presentation of the B&B paradigm.

B&B algorithms may be seen as implicit enumeration methods for solving opti-
mization problems P: Z�P � � minx2S f �x�, where f : S ! R; S � Rn, and it is as-
sumed P can be solved by enumerating a ®nite number of points (not necessarily
known in advance) in S. The B&B strategy is often cast as the construction of a tree
(variously called B&B, enumeration or exploration tree). The root of the tree is the
original problem, while the sons of any given node (subproblem) Q are the sub-
problems obtained by decomposition of Q. The decomposition operation, called
branching, partitions the feasible domain of a given problem into a number of
smaller subsets on which the same optimization problem is de®ned. Problems are
recursively decomposed until either a solution may be easily found, or one deter-
mines that further partitioning is unnecessary because the original problem has been
solved, or the subproblems resulting from decomposition are infeasible, or one may
prove that further branching cannot improve the current best known solution. To
determine these conditions, a bounding operation is performed that yields a lower
bound on the optimal value of the subproblem and, sometimes, an upper bound on the
optimal value of P (when a feasible solution to the original problem is identi®ed).
Elimination, or fathoming, rules use these bounds to determine when further de-
composition of a subproblem is unnecessary (when it is the case, such a subproblem
is called a leaf). A subproblem Q may thus be generated when it has been obtained
from another subproblem by branching, evaluated when a bounding operation has
been applied to it, or examined when it has been either decomposed by branching or
eliminated by fathoming. Sequential B&B algorithms thus consist of performing
branching and bounding operations, as well as testing the fathoming rules. The order
according to which subproblems are examined is determined by selection criteria that
thus determines how the tree is explored; best-®rst (select the subproblem with the
lowest lower bound) and depth-®rst (select the most recently generated subproblem)
are the most used paradigms.

Parallelization strategies for B&B algorithms may be classi®ed according to a
large number of computer architecture, algorithm design, and implementation
characteristics. In their survey, Gendron and Crainic [12] identify three main classes
of parallel B&B algorithms according to the degree of parallelization of the search
tree. Type 1 strategies correspond to the decomposition of node operations (e.g.,
bounding computations). In type 2 approaches, the search tree is built in parallel
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(e.g., processes work on several subproblems simultaneously). When type 3 strategies
are applied, several trees are explored concurrently. The strategies presented and
analyzed in this paper belong to the type 2 class, as do most other parallel B&B
methods found in the literature.

Implementations of type 2 may be further classi®ed according to their synchro-
nization of communications and number of work pools. Synchronous algorithms im-
pose strict rules on communications, while in asynchronous algorithms,
communications may occur at any time and depend only on the local algorithmic
logic of the interacting processes. The strategies presented in this paper belong to the
asynchronous type. We favor asynchronous approaches because, in our opinion,
they o�er more e�cient parallelizations: allocation of work is not delayed while
waiting for the next synchronization moment, and essential information, such as
upper bound values, is distributed in a timely manner.

A work pool is a memory location where processes pick up and store their units of
work. Typically, a process picks up a subproblem in a work pool and examines it.
When it ®nishes its action, the process stores the subproblems not yet examined in
the same or in a di�erent work pool. Single pool algorithms make use of only one
memory location, whereas in multiple pool implementations there are several
memory locations where processes ®nd and store subproblems yet to be examined. In
this paper, we analyze three strategies: (1) centralized: all subproblems are kept in a
single pool; (2) decentralized: a collegial multiple pool strategy where each process
that participates in the exploration of the tree has one dedicated pool; (3) hybrid: a
mixed multiple pool approach where each process has an associated work pool, but
there is also a global work pool, shared by all processes.

The three strategies share a number of features. All are built for a ®xed number of
processes created when the algorithm is initiated. Although the allocation of tasks to
processes is di�erent for each approach, there is always a process, identi®ed as co-
ordinator, which facilitates the inter-process exchanges of information, particularly
regarding the equitable distribution of work loads, and is in charge of detecting the
end of the computations. The three strategies also share the same initialization
procedure: a sequential exploration of the tree, that starts at the root node and
proceeds until either K nodes are evaluated, or up to the identi®cation of a ®rst leaf.
In Section 4, we show that such an initialization phase, if well calibrated, helps
decrease the so-called search penalty (de®ned as the number of nodes treated by the
parallel algorithm in excess of the sequential one).

The centralized strategy is implemented as a classical master±slave approach. The
master process, which is also the coordinator, executes the B&B search, speci®es the
tasks to be executed by the other processes, controls the pool of subproblems to be
examined, and determines the end of the computations (an empty pool and all
processes idle). Worker processes perform bounding and branching operations.
Upon completion of this task, workers return the results ± the new subproblems or a
fathoming message ± to the master process. When a worker improves the upper
bound, it broadcasts it to the master and all the other workers. The master selects
subproblems from the pool and allocates them to idle workers according to a simple
round-robin strategy. The selection of subproblems may be based on one of the
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usual sequential criteria (e.g., depth-®rst, best-®rst), or on a hierarchical combination
thereof (e.g., among depth-®rst solutions with equal values, select the one with the
lowest lower bound) expressed as the subproblem priority.

In this single-pool strategy, the control of the search is centralized at the level of
the master process. In the decentralized and hybrid strategies, however, the control
of the search is distributed among the individual processes, each executing a B&B on
the subproblems in its own pool. Consequently, di�erences may appear among the
amount of work each process has to undertake. One then has to introduce mecha-
nisms to detect this situation and correct it by transferring work between the ap-
propriate processes. These load balancing strategies, are based on the notion of
workload, L�X�, de®ned as an estimation of the e�ort required to examine the sub-
problems in pool X (see [9], and the references therein, for further discussion on this
notion).

The decentralized approach implements a totally distributed memory organiza-
tion: each process manages its own pool of unexamined subproblems and executes a
complete B&B on these subproblems. The control of the search is thus collectively
assumed by the individual processes that exchange upper bound information as well
as subproblems when the workloads are unbalanced. To facilitate the load balancing
operations, relevant information is kept by the coordinator. Load balancing is
performed according to a dynamic, on-request strategy that aims to match processes
with almost empty pools to highly loaded ones, while avoiding that processes be-
come idle waiting for work. Processes with workloads superior to a Lmin threshold
are said to be highly charged and potential suppliers of work to other processes; we
identify them as granting processes.

The load balancing strategy proceeds as follows. Each process evaluates its
workload L�X� each time a subproblem is inserted or deleted from the pool and
either informs the coordinator of the status of its workload, or requests work if it has
reached or fallen under an alert threshold La. It is thus hoped that work will be
transferred before all the remaining subproblems in the pool are examined and
disposed of. Following the reception of a request for work, the coordinator selects a
granting process and issues a transfer proposal. This selection is based on the
workload values stored in the coordinator memory and may either pick up the most
heavily loaded process (rule HL), or proceed according to a round-robin scheme on
the heavily loaded processes (rule RR). On receiving the transfer proposal, the
process veri®es that its workload is superior to Lmin indicating that it may still satisfy
it; otherwise, it sends back a refusal message. In the latter case, another process has
to be selected by the coordinator. When a process accepts the transfer proposal, it
selects a number N of subproblems from its pool to send to the requesting process
(this load balancing strategy is similar to the one proposed by Gendron and Crainic
[14], but it introduces two new parameters, La and N, as well as a new rule, HL, to
identify the granting process). The search is completed when all processes have work
requests pending.

The hybrid strategy is close to the decentralized approach, but it confers a more
important role to the coordinator process. The fundamental idea is that looking for a
suitable process to satisfy a work request might be too time consuming, especially
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when the ®rst selected process cannot accept the transfer proposal. It would then be
more e�cient to endow the coordinator with its own pool of subproblems, out of
which it could directly satisfy incoming work requests. In a hybrid strategy, sub-
problem exchanges thus proceed between processes, each implementing the se-
quential B&B, and the coordinator. On the one hand, on request, the coordinator
transfers a number of subproblems to the requesting process. Similar to the cen-
tralized strategy, the selection is performed according to the subproblem priorities.
On the other hand, heavily loaded processes transfer some of their unexamined
subproblems to the coordinator pool. The selection of these subproblems is guided
by a dual principle that states that one should not send ``bad'' problems (to avoid
generate unnecessary work) and that the exploration of the tree should aim to mimic
that of the original sequential method. Thus, one identi®es and transfers so-called
second quality subproblems, e.g., subproblems that show promise but which would
have been examined at a later moment in a sequential exploration (recall that these
subproblems are sent to the coordinator work pool and that they are to be examined
later). Thus, for dichotomous branching and depth-®rst exploration, e.g., second
quality subproblems could be the one not selected for immediate examination. The
search is completed when all processes have work requests pending and the coor-
dinator pool is empty.

3. Problem formulation and sequential algorithm

To test our parallelization strategies, we chose a representative location/network
design formulation, the multicommodity location/allocation problem with balancing
requirements (MLB). This class of models is motivated by applications related to the
management of heterogeneous ¯eets of empty containers by international maritime
shipping companies. The general goal is to locate depots for empty containers in
order to collect the supplies available at customers' sites and to satisfy customer
requests, while minimizing the total operating costs. These costs comprise ®xed costs
for opening and operating the depots, and transportation costs generated by cus-
tomer-depot tra�c and by inter-depot movements. These inter-depot balancing
¯ows di�erentiate the problem from classical location/allocation applications. For
further details on the problem description, the reader is referred to Crainic et al. [7].

Consider a directed network G � �N ;A�, where N is the set of nodes and A is the
set of arcs. There are several commodities (types of containers), represented by set P,
which move through the network. The set of nodes may be partitioned into three
subsets: O, the set of origin nodes (supply customers); D, the set of destination nodes
(demand customers); and T, the set of transshipment nodes (depots). For each depot
j 2 T , we de®ne O�j� � i 2 O : �i; j� 2 Af g and D�j� � i 2 D : �j; i� 2 Af g, the sets of
customers adjacent to this depot, and assume that O�j� [ D�j� 6� ;. For each node
i 2 N , we de®ne the sets of depots adjacent to this node in both directions:
T��i� � j 2 T : �i; j� 2 Af g, and Tÿ�i� � j 2 T : �j; i� 2 Af g. Since it is assumed that
there are no arcs between customers, the set of arcs may be partitioned into three
subsets: customer-to-depot, AOT � �i; j� 2 A : i 2 O; j 2 Tf g; depot-to-customer,
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ATD � �i; j� 2 A : i 2 T ; j 2 Df g; and depot-to-depot, ATT � �i; j� 2 A : i 2 T ;f
j 2 Tg. For each customer i 2 O, the supply of commodity p is noted op

i , while for
each customer i 2 D, the demand for commodity p is noted dp

i . All supplies and
demands are assumed to be non-negative and deterministic. A non-negative cost cp

ij is
incurred for each unit of ¯ow of commodity p moving on arc �i; j�. In addition, for
each depot j 2 T , a non-negative ®xed cost fj is incurred if the depot is opened.

Let xp
ij represent the amount of ¯ow of commodity p moving on arc �i; j�, and yj be

the binary location variable that assumes value 1 if depot j is opened and 0 otherwise.
The problem is then formulated as

Z � min
X
j2T

fjyj

(
�
X
p2P

X
�i;j�2AOT

cp
ijx

p
ij

 
�

X
�j;i�2ATD

cp
jix

p
ji �

X
�j;k�2ATT

cp
jkxp

jk

!)
; �1�

subject toX
j2T��i�

xp
ij � op

i 8i 2 O; p 2 P ; �2�

X
j2Tÿ�i�

xp
ji � dp

i 8i 2 D; p 2 P ; �3�

X
i2D�j�

xp
ji �

X
k2T��j�

xp
jk ÿ

X
i2O�j�

xp
ij ÿ

X
k2Tÿ�j�

xp
kj � 0 8j 2 T ; p 2 P ; �4�

xp
ij6 op

i yj 8j 2 T ; i 2 O�j�; p 2 P ; �5�

xp
ji6 dp

i yj 8j 2 T ; i 2 D�j�; p 2 P ; �6�

xp
ij P 0 8�i; j� 2 A; p 2 P ; �7�

yj 2 0; 1f g 8j 2 T : �8�
Eqs. (2) and (3) ensure that supply and demand requirements are met, relations (4)
correspond to ¯ow conservation constraints at depot sites, while constraints (5) and
(6) forbid customer-related movements through closed depots. Note that analogous
constraints for the inter-depot ¯ows are redundant since inter-depot costs satisfy the
triangle inequality [7].

Two Lagrangian relaxations of the MLB may be used in order to e�ciently
compute tight lower bounds on Z. In general, a Lagrangian relaxation approach
removes some constraints from the formulation and introduces them into the ob-
jective function by weighting their violations with so-called Lagrangian multipliers.
One Lagrangian relaxation can be obtained by removing constraints (5) and (6). This
yields a multicommodity uncapacitated minimum cost network ¯ow problem (MCNF),
which decomposes into Pj j single-commodity uncapacitated minimum cost net-
work ¯ow problems, for which e�cient solution techniques exist [1]. Another La-
grangian relaxation can be derived by removing constraints (4). One then obtains an
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uncapacitated location problem (ULP) [6,17], for which one of the most e�cient
methods is the DUALOC algorithm proposed by Erlenkotter [10]. Embedded into
DUALOC is a dual-ascent procedure that solves approximately the linear relaxation
of the ULP and also derives primal solutions satisfying the integrality constraints.
When solving the MCNF relaxation, values of the dual variables associated to
constraints (4) can be obtained and then used to adjust the Lagrangian multipliers for
the ULP relaxation. Similarly, when the linear relaxation of the ULP is solved ap-
proximately by the dual-ascent procedure of DUALOC, values for the dual variables
associated to constraints (5) and (6) are obtained, which can then be used to adjust
the Lagrangian multipliers for the MCNF relaxation. By iteratively solving the two
relaxations, adjusting the Lagrangian multipliers of one relaxation to the values of
the dual variables obtained when solving the other, one obtains a dual-ascent scheme
that approximates the linear relaxation of the MLB. Within this iterative scheme,
upper bounds can be easily computed by using the primal information generated
when solving the relaxations. An upper bound is derived from the optimal solution of
the MCNF relaxation by setting yj to 1 whenever there is ¯ow moving through depot
j (to 0 otherwise). When the ULP relaxation is solved, an upper bound is computed
by solving the MCNF obtained by ®xing the y variables to the values of the best
primal integral solution identi®ed by the dual-ascent procedure of DUALOC.

Gendron and Crainic [13] present a bounding procedure based on this iterative
scheme, which stops either when the relative gap between the lower and upper
bounds is less than a user-supplied value �1, or when the relative di�erence between
two successive lower bounds is less than a user-supplied value �2, or, ®nally, when the
number of iterations has reached a limit tmax. This procedure is embedded into a
B&B algorithm that uses e�cient branching rules and preprocessing tests to reduce
the size of the tree. A dichotomous branching rule is designed to generate new
subproblems. The depth-®rst rule is used to decide which generated subproblem
should be examined in priority. This rule minimizes computer storage requirements
and can be implemented e�ciently using a last-in-®rst-out stack, although the total
number of subproblems it generates might be large [16]. However, when, as in the
present case, a good heuristic is used to compute e�ective upper bounds and smart
branching rules are implemented to e�ciently explore the tree, this disadvantage may
be signi®cantly reduced. Further details on the bounding procedure, as well as on the
branching and preprocessing rules, can be found in [13].

4. Implementation and computational experiments

A number of choices were made in order to implement the three general strategies
presented in Section 2. Some of these choices were motivated by the computer en-
vironment used ± a message-passing, distributed architecture ± while others seemed
reasonable given the particular class of formulations for which the methods were
intended.

The centralized strategy is implemented rather straightforwardly. The pool uses a
heap data structure and the lower bound of the parent problem is used to try to
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eliminate newly generated subproblems before their insertion in the pool. The pri-
ority used to select the next subproblem favors the deepest nodes, with ties broken by
using, ®rst, the lower bound value of the parent node and, second, the value of the
variable ®xed to generate the subproblem, in a way that imitates the order of ex-
ploration of the sequential tree. A number of other possible priority rules based on
di�erent orderings of the same criteria have been tested (see [4]), but clearly shown to
be inferior because they increase the search penalty.

The sequential B&B of Section 3 makes use of a dichotomous branching opera-
tion. Thus in both decentralized and hybrid approaches, a process that performs a
branching operation keeps one subproblem for immediate examination. The other
one is inserted in the pool in the ®rst strategy, while it is passed to the coordinator
pool in the latter. Therefore, in the current implementation of the hybrid strategy,
the working processes do not have to manage pools. Indeed, these are always empty,
since the subproblems that are not immediately examined are considered of second
quality and are sent to the coordinator. As for the management of the coordinator
pool of the hybrid approach, it is similar to that used for the centralized strategy.

The workload associated with a pool in the decentralized strategy is computed as
the number of subproblems in the pool. As mentioned above, two rules have been
implemented to select the granting process in this approach. Rule HL selects the
most heavily loaded process. In this case, a process informs the coordinator of its
charge every time it has varied by more than a quantity DL compared to the last
charge value sent. Rule RR selects the granting process through a round-robin
scheme on the heavy loaded processes. For this approach, a process sends the value
of its workload to the coordinator only when the new value modi®es its status: from
heavily to lightly charged or vice versa. The pools are implemented using stacks to
ensure that the depth-®rst paradigm of the sequential procedure is followed.

The strategies have been calibrated and tested on a network of 16 Sun Ultra 1
workstations, each equipped with 64 Mb of RAM. The stations were linked by Fast-
Ethernet (100 Mbits/s) technology and the network was dedicated to the tests (i.e., at
the same time, no other jobs were running on any processor of the network). The
bounding and branching procedures are programmed in FORTRAN and compiled
with the f77 compiler (O4 optimization option). The parallel B&B strategies are
written in C and compiled with the gcc compiler (O3 optimization option). The PVM
library was used to manage the message exchanges among the processes.

The objective of the computational experiments was to compare the relative
performances of the three strategies with respect to:
1. the number of processors;
2. the problem granularity, which corresponds to the time spent in examining one

subproblem (as there can be signi®cant variations of the granularity for the same
problem, average and standard deviation can be used to measure it more precise-
ly);

3. the problem size, which is the number of examined subproblems in the sequential
tree.
Our series of experiments were performed on 11 problem instances. Table 1 in-

dicates for each problem instance the number of container types (jP j), customers
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(jOj; note that O � D for all instances), depots (jT j), arcs (jAj), the size of the se-
quential tree (n), and the elapsed time (in CPU seconds) required to explore this tree
(Ts). The ®rst six problems are randomly generated (the generator is described in [8]).
These instances are relatively easy to solve, and therefore we did not expect signi-
®cant savings by solving them in parallel. However, we have included them in our
series of tests because similar instances have been used as testbeds in previous studies
on the MLB. Problem P7 is from an actual application, while P8±P11 are obtained
from P7 by perturbing all costs by a random factor chosen in the interval [0.8, 1.8].
In all experiments with these instances, the parameters of the bounding procedure
were set to the following values: �1 � �2 � 0:01 and tmax � 10. Typically, between 1
and 6 iterations of the bounding procedure were performed for each subproblem
(some two iterations, on average).

First, we have calibrated the parameters of the load balancing method of the
decentralized strategy. In these experiments, we have used an initialization procedure
that consists of a sequential exploration up to the identi®cation of a ®rst leaf, and
have tested both the HL and RR rules. When testing the HL rule, the parameter DL
is set to 1, so that the coordinator retains the most recently updated information
about the workloads of the processes. We have used three measures to compare the
various parameter settings: (1) search penalty PS: ratio of the number of nodes
generated during a parallel execution to the number of nodes explored by the se-
quential algorithm; (2) load balancing factor LF: ratio of the minimum useful time to
the maximum useful time, where the minimum and the maximum are taken over all
working processes (here, the useful time of a working process is the total elapsed time
minus the waiting and I/O times of the process during the parallel execution);
(3) speedup S: ratio of the total elapsed time required by the sequential algorithm to
the total elapsed time of the parallel execution.

Our experiments allowed us to conclude that Lmin � 1 (i.e., a worker can share
part of its work when its pool contains at least two subproblems) performs uniformly
better than other values, irrespective of the particular settings of the other param-
eters. This can be easily explained. On the one hand, if Lmin � 0, a worker with only

Table 1

Dimensions of test problems and sequential results

Problem jP j jOj jT j jAj n Ts

P1 1 219 44 7152 221 185

P2 2 219 44 7150 565 281

P3 2 219 44 7150 145 339

P4 1 219 44 7154 145 38

P5 2 220 43 7100 247 125

P6 1 220 43 7100 99 121

P7 12 289 130 4718 3681 3013

P8 12 289 130 4718 10 825 8146

P9 12 289 130 4718 3909 2690

P10 12 289 130 4718 9523 6794

P11 12 289 130 4718 3421 2395
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one node left in its pool might send it to answer a request, therefore becoming idle.
On the other hand, if Lmin P 2, a worker might refuse to share work, while, in fact, at
least one node would be available for immediate transfer. This conclusion is con-
sistent with the observations reported by Gendron and Crainic [14], who also
identi®ed 1 as the best value for parameter Lmin.

Since the randomly generated problems (P1±P6) and the most realistic instances
(P7±P11) are quite di�erent with respect to both size and granularity, we have cal-
ibrated these two classes of instances separately. For each instance, every parameter
setting was tested three times to account for variations due to the asynchronous
nature of the communications (all experiments reported in the paper obey the same
protocol). Performance measures averaged over the three runs have been used to
compare the di�erent parameter settings.

The calibration performed on problems P1±P6, reported in [4], allowed us to
select La � 2 (i.e., a worker sends a request when it has two subproblems left to
examine) and N � 1 (i.e., a process sends one subproblem each time it shares part of
its pool) combined with the HL rule. In Table 2, we report the results of the cali-
bration on problems P7±P11, averaged over all ®ve instances. The table displays the
three performance measures for each parameter setting tested, each rule, HL or RR,
and for p � 16 processors (similar conclusions are obtained for other values of p).

We ®rst observe that the load balancing method is quite robust, since its per-
formances do not signi®cantly vary when di�erent parameter values are used (a
similar observation also applies to problems P1±P6). We note that, as N increases,
the load balancing factor generally increases. This is to be expected, since transfer-
ring as many nodes as possible (note that we always ensure that the load of the
granting process never falls below Lmin) clearly improves load balancing. However, if
N is too large, the chance of experiencing a search penalty increases, as illustrated by
the values of PS for N � 4. This is so because when early exchanges occur, the
granting process will examine nodes closer to the root earlier than it would do in a

Table 2

Calibration of the load balancing strategy (P7±P11, p � 16)

La N HL RR

PS LF S PS LF S

1 1 1.019 0.908 12.14 1.029 0.886 11.93

1 2 1.016 0.914 11.89 1.046 0.920 11.91

1 3 1.020 0.914 12.22 1.019 0.924 12.34

1 4 1.459 0.941 10.81 1.247 0.947 11.31

2 1 1.016 0.861 11.86 1.028 0.796 11.16

2 2 1.070 0.948 12.04 1.056 0.927 12.00

2 3 1.018 0.937 12.45 1.024 0.911 12.24

2 4 1.457 0.943 10.44 1.210 0.934 11.36

3 1 1.017 0.875 12.21 1.034 0.769 11.13

3 2 1.063 0.912 11.98 1.064 0.867 11.62

3 3 1.143 0.941 11.58 1.008 0.920 12.62

3 4 1.433 0.920 10.81 1.194 0.942 11.39
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sequential exploration; if the optimal value has not been found by then, this would
result in a search penalty (assuming the sequential exploration is e�ective, as in the
present case). We observe that N � 2 and N � 3 generally perform best, irrespective
of the values of La and of the rule chosen to identify the granting process. The value
of La is not particularly critical, although it is reasonable to have La ' Lmin � 1,
otherwise a processor might send a request for work too early, when in fact, it should
be considered as a candidate for granting requests (this is why we have only tested
La � 1; 2; 3). Rules HL and RR are competitive; indeed, signi®cant di�erences in the
speedups attained by the two rules often can only be explained by di�erences in the
search penalty. After these tests, the following values were selected for the remaining
experiments on problems P7±P11: La � 3 and N � 3, combined with rule RR.

Next, we have experimented with the most realistic instances (P7±P11) to calibrate
the initialization procedure. Speci®cally, we have run the three strategies (C: cen-
tralized; D: decentralized; H: hybrid) by using four initialization approaches: K � 1,
which corresponds to evaluate only the root node in the initialization phase; K � p
and K � 2p, for which the sequential initialization stops after p and 2p nodes have
been evaluated; K � 1, which is used to denote the initialization that stops once a
®rst leaf is found. Table 3 shows the results obtained for p � 16 processors, where in
addition to PS and S, we display Amdahl's speedup, SA, which is an estimation of the
speedup derived from Amdahl's law [2]. More speci®cally, if p is the number of
processors and eT is the time spent in the sequential part of the algorithm, an estimate
of the speedup is then obtained from the expression

SA � p
Ts

Ts � �p ÿ 1�eT
 !

:

In our case, eT corresponds to the time spent in the initialization phase, which, in
the current implementation, is performed sequentially. The table reports values of SA

based on averaging over all runs.
These results show that it is not productive to start the parallel exploration too

early because this increases the chance of experiencing a search penalty. This phe-
nomenon occurs because the optimal value is not known in advance (although
generally a good upper bound is computed at the root), but discovered after a while,
once the depth-®rst search has explored deep regions of the tree. If the parallel search
starts just after the root node has been evaluated, it will explore the tree in a breadth-
®rst fashion, possibly expanding nodes that would have been fathomed in sequential;

Table 3

Comparisons of the initialization strategies (P7±P11, p � 16)

K C D H SA

PS S PS S PS S

1 1.930 10.06 1.276 11.50 1.104 12.92 15.96

p 1.058 13.10 1.243 11.49 1.002 12.57 15.37

2p 0.990 13.11 1.125 12.02 1.006 12.47 14.81

1 1.004 12.51 1.008 12.62 1.002 12.65 13.94

38 B. Bourbeau et al. / Parallel Computing 26 (2000) 27±46



this is so because at the moment these nodes are examined by the sequential algo-
rithm, the optimal value has already been found deep into the tree. Of course, such
search penalties occur because the sequential search is e�ective, otherwise the parallel
algorithm, by exploring the tree in a breadth-®rst fashion, could actually ®nd the
optimal value earlier than the sequential one, and consequently generate a smaller
tree. This phenomenon is observed for some runs and some instances, especially
when the centralized approach is used with K � 2p (in this case, the average value of
PS is less than 1). However, the same setting of K is not as good when the decen-
tralized strategy is used, in which case we observe a signi®cant search penalty. The
most conservative rule, which tends to imitate the sequential search, is to stop the
initialization after the search has gone as deep as possible into the tree, i.e., up to the
identi®cation of a ®rst leaf. In this case, we observe that the sequential and parallel
trees have, on average, the same size, irrespective of the strategy used. Hence, this
rule was selected for the remaining experiments.

The drawback of this approach is that the exploration is performed sequentially
for a while, only one processor being used during the initialization phase. This
disadvantage is clearly illustrated by the values of SA, especially when K � 1. The
following parallel implementation of the initialization phase would remedy this
problem: while one processor explores the tree up to K nodes or until a ®rst leaf is
found, other processors compute the bounds for the new nodes. Although it would
clearly improve the e�ciency of the initialization phase, we have not included such
an implementation in our study because it would not impact the e�ciency of the
parallel search. In fact, our analysis, focused on the relative performances of the
three parallelization strategies, is not a�ected by whether the initialization is per-
formed in parallel or not.

We now present the main results of our experiments, which aim to compare the
relative performances of the three strategies. In order to facilitate the analysis, we
®rst show the results obtained for a ®xed number of processors (p � 16). Table 4
displays for each problem instance and each strategy the four measures de®ned
above, to which we add the utilization factor, U, which is the ratio of the minimum
useful time to the total elapsed time.

We ®rst note that the search penalties for problems P1±P6 are very close to 1,
except for problem P5, for which PS is still reasonably close to 1. This con®rms the
validity of our earlier observations concerning the initialization strategy. We also
note that the sequential trees for these instances are small and thus the initial se-
quential exploration takes up a signi®cant part of the parallel computation time, as
illustrated by the values of SA. Therefore, the maximum speedups are small. The
situation is much better for larger instances (P7±P11), but still the serial time is
signi®cant.

To better understand the results displayed in Table 4, we observe that the im-
plementation of each strategy may be characterized according to its particular task
decomposition, where a task corresponds to a computation phase between two
consecutive requests for work: for the centralized strategy, a task corresponds to the
examination of one node; for the decentralized strategy, a task corresponds to the
exploration of a partial subtree (partial, since some nodes can be sent to other
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processors); for the hybrid strategy, a task corresponds to the exploration of a
branch of the tree (i.e., a simple path starting at one arbitrary node and ending at a
leaf).

For randomly generated problems (P1±P6), we observe that a ®ne task granularity
contributes to better balance the loads among processors. Indeed, the C strategy
shows much better load balancing and utilization factors than the two others. This is
so because, for problems of such a small size, not enough tasks are generated for the
H and D strategies to be e�cient, especially for the decentralized strategy which has
the coarsest task granularity of the three. As a result, the speedups obtained by the C
strategy are better than those displayed by the other strategies, but only slightly so.
We also observe that the centralized strategy shows, for each instance, signi®cant
di�erences between the load balancing and utilization factors, which means that the

Table 4

Comparisons of the parallelization strategies (p � 16)

Problem C D H

PS 1.109 1.145 1.086

P1 LF (U) 0.871 (0.661) 0.521 (0.520) 0.601 (0.573)

S (SA) 3.86 (4.74) 3.69 (4.59) 3.48 (4.49)

PS 0.979 0.986 0.972

P2 LF (U) 0.932 (0.841) 0.673 (0.670) 0.875 (0.802)

S (SA) 7.00 (7.95) 6.13 (7.32) 6.57 (7.73)

PS 0.945 1.000 0.945

P3 LF (U) 0.544 (0.366) 0.163 (0.163) 0.350 (0.331)

S (SA) 1.87 (2.09) 1.82 (2.07) 1.74 (1.97)

PS 0.966 1.000 0.966

P4 LF (U) 0.835 (0.563) 0.344 (0.335) 0.520 (0.509)

S (SA) 2.48 (3.14) 2.32 (3.03) 2.24 (2.87)

PS 1.287 1.235 1.283

P5 LF (U) 0.890 (0.687) 0.379 (0.348) 0.819 (0.670)

S (SA) 3.62 (4.81) 3.35 (4.69) 3.42 (4.60)

PS 1.000 1.000 1.000

P6 LF (U) 0.647 (0.629) 0.366 (0.353) 0.399 (0.388)

S (SA) 1.90 (2.17) 1.87 (2.13) 1.73 (1.99)

PS 1.024 1.028 1.019

P7 LF (U) 0.977 (0.910) 0.896 (0.896) 0.986 (0.973)

S (SA) 12.90 (13.38) 13.03 (13.43) 13.55 (13.61)

PS 0.997 1.023 0.997

P8 LF (U) 0.983 (0.965) 0.979 (0.972) 0.992 (0.991)

S (SA) 14.14 (14.95) 13.53 (14.92) 13.67 (14.88)

PS 0.994 0.987 0.986

P9 LF (U) 0.972 (0.927) 0.922 (0.916) 0.953 (0.945)

S (SA) 11.58 (13.38) 12.15 (13.39) 11.85 (13.59)

PS 1.000 1.002 1.000

P10 LF (U) 0.986 (0.969) 0.938 (0.936) 0.987 (0.979)

S (SA) 13.15 (14.75) 13.38 (14.76) 13.19 (14.82)

PS 1.004 1.010 1.007

P11 LF (U) 0.974 (0.898) 0.865 (0.865) 0.913 (0.905)

S (SA) 10.77 (13.08) 11.02 (13.11) 10.99 (13.25)
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useful time corresponding to the most busy processor is signi®cantly smaller that the
total elapsed time. This indicates important waiting times resulting from the bot-
tleneck created by simultaneous accesses to the pool. A similar tendency may be
observed for the hybrid approach as well, albeit signi®cantly less marked. For the D
strategy, however, load balancing and utilization factors almost coincide.

For instances derived from the actual application (P7±P11), all strategies show
much better load balancing and utilization factors compared to the other problems.
This is so because problems P7±P11 generate larger trees; therefore, more tasks are
available, which improves load balancing. This is especially true for the D and H
strategies, the last one even showing better statistics in this respect than the C
strategy. Still, the load balancing and utilization factors di�er for the centralized
approach, but these di�erences are much less signi®cant than for the other problems.
Finally, note that the speedups are comparable for the three strategies.

To analyze the evolution of performances with respect to the number of pro-
cessors, the three strategies were run on 2, 4, 8 and 16 processors. We illustrate the
results for the most di�cult of the problems, P8. Figs. 1 and 2 show the variation of
the load balancing factor and of the speedup, respectively. As illustrated in Fig. 1,
the load balancing factor slowly decreases as p increases for the C strategy, as no
discernible pattern emerges for the D and H approaches. The speedups for the three
strategies are quasi-linear up to 16 processors (only the serial fraction imposes a
penalty).

Although overall, the results of the three approaches are comparable, we can
identify two factors that have a clear impact on the relative performances of the three
strategies: (1) the number of generated tasks: when a limited number of tasks are
created, the decentralized approach does not utilize the resources well (this follows

Fig. 1. Load balancing factor for coarse grain ± medium size problem.
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clearly from the results on problems P1±P6); (2) the ratio of the number of processors
over the time per task: if this ratio is high, the bottleneck generated by simultaneous
accesses to the pool signi®cantly penalizes the centralized approach.

To better analyze the e�ect of these two factors, we ran the algorithm limiting the
maximum number of iterations in the bounding procedure to 1 (tmax � 1). This is
equivalent to solving only the MCNF relaxation at each node of the tree. This also
dramatically increases the size of the tree. With this new parameter setting, none of
the problems could be solved sequentially in a reasonable amount of time. Therefore,
we selected a randomly generated problem of smaller dimensions to run these tests.
This problem, called P12, has 26 depots, 124 customers, 3 types of containers, and
2392 arcs. Using the new parameter setting, the sequential algorithm generated
300 563 nodes and took 19 141 s on one Ultra 1 workstation. Thus this resulting
problem is ®ne grain (only one iteration of the bounding procedure is performed at
each node for a problem of small dimensions) and large size (the tree is one order of
magnitude larger than the one generated for problem P8). In contrast, problem P8 is
coarse grain (several iterations of the bounding procedure are executed for a large-
scale problem) and medium size.

The three parallel strategies have been tested on problem P12. Again, the search
penalties were very close to 1. Figs. 3 and 4 show the load balancing factors and the
speedups obtained by the three strategies for p � 2; 4; 8; 16, respectively. When
compared to Figs. 1 and 2, one notices signi®cant di�erences: collegial control ap-
proaches are more e�cient than the centralized strategy, with the decentralized
displaying a slight edge over the hybrid. Moreover, the centralized approach exhibits
di�culties in balancing the loads and the situation deteriorates rapidly as the number
of processors increases. This is a consequence of the bottleneck created by frequent
simultaneous accesses to the pool. The current implementation of the hybrid

Fig. 2. Speedup for coarse grain ± medium size problem.
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approach could su�er from the same drawback, but the problem is much less critical
than for the centralized strategy, since each task corresponds to the exploration of a
branch in a large tree. If deemed necessary, this could be corrected by actually using
the distributed pools and decreasing the number of nodes sent to the coordinator
pool. One notices that, since the tree is very large, the decentralized strategy creates a
su�ciently large number of tasks to keep processors busy most of the time. Indeed,

Fig. 3. Load balancing factor for ®ne grain ± large size problem.

Fig. 4. Speedup for ®ne grain ± large size problem.
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the load balancing factor is very close to 1, irrespective of the number of processors
(although it decreases very slowly with p). As a result, the speedup of the centralized
strategy drops to 13.55 when p � 16, while for both the H and D strategies, it is
(almost) ideal: 15.74 and 15.92, respectively. Note that for such large trees, the
initialization phase is negligible and Amdahl's law is no longer a concern.

5. Conclusion

We have presented three general strategies that may be used to parallelize most
B&B algorithms specialized to location/network design formulations. An experi-
mental comparison of these strategies has been performed by using the best known
sequential B&B algorithm for the location/allocation problem with balancing re-
quirements.

The three approaches are obtained by dividing the search tree among processors
and performing operations on several subproblems simultaneously. The strategies
di�er in the way they manage the list of subproblems and control the search. While
the presentation is general, the implementations made use of a message-passing
environment, a distributed network of workstations.

Relative to the particular problem studied, the experimental results indicate that
our implementations are very e�ective. No search penalty is observed, indicating that
the parallel search tree is no larger than the sequential one, and near-linear speedups
have been obtained for actual large-scale applications, with up to 16 processors.
From a broader point of view, the results indicate that while a centralized approach,
where one process controls the search, is appropriate for problems of relatively
coarse granularity and small trees, its performances degrade as soon as the granu-
larity gets ®ner and the size of the tree increases. In these circumstances, strategies
that implement a collegial control of the list of subproblems perform better. In our
experiments, a purely decentralized approach performed best, with a hybrid orga-
nization a close second.

Few studies have appeared that compare strategies to control the distribution of
subproblems and the search path of parallel B&B algorithms (see Section 1). Our
paper thus contributes to broaden our understanding of parallel B&B algorithm
behavior, particularly when applied to location/network design formulations on
message-passing architectures. The study presented in this paper has also pointed out
a number of interesting research directions, including: initialization procedures that
make a better use of the parallel environment without increasing the search penalty;
implementation strategies of hybrid approaches that exploit more intensively the
local pools; a more comprehensive study of the various parameters that fashion the
decentralized and hybrid searches; the development of adaptive control and load
balancing strategies; the study of the relative performances of the strategies on
various architectures; the integration of di�erent selection rules (depth-®rst, best-
®rst) within the parallelization strategies (see [5] for a recent comparative study of
selections rules in the context of parallel B&B algorithms); the adaptation of the
strategies to other location/network design formulations.
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